12.11.2021

Полное восстановление нитрила адипиновой кислоты водородом уравнение. Химические свойства


Нитрилы называют различными способами:

CH 3 CN CH 2 =CHCN PhCN NC(CH 2) 4 CN

этаннитрил пропеннитрил бензолкарбонитрил адипонитрил

(ацетонитрил) (акрилонитрил) (бензонитрил)

Способы получение нитрилов

3.1.1. Получение нитрилов дегидратацией амидов

Дегидратация амидов, о которой мы говорили в предыдущем разделе может служить последней стадией в цепи превращений карбоновой кислоты в нитрил этой кислоты:

Все эти реакции часто совмещают в одном процессе, пропуская смесь карбоновой кислоты и аммиака через окись алюминия при 500 о С:

Упр.46. Напишите реакцию промышленного метода получения адипонитрила из адипиновой кислоты.

3.1.2. Получение нитрилов окислительным аммонолизом углеводородов

При изучении окисления углеводородов мы видели, что синильную кислоту (нитрил муравьиной кислоты) и нитрилы других кислот получают окислительным аммонолизом соответствующих углеводородов по схеме:

Упр.47. Напишите реакции получения (а) акрилонитрила, (б) бензонитрила, (в) ацетонитрила и (г) нитрила терефталевой кислоты окислительным амонолизом соответствующих углеводородов.

3.1.3. Получение нитрилов по реакции Кольбе

При взаимодействии галогенуглеводородов с цианидом калия в водном этаноле по механизму S N 2 образуются нитрилы:

Поскольку цианид-анион является амбидентным ионом, в качестве побочного продукта образуются изонитрилы, которые удаляют встряхивая реакционную смесь с разбавленной соляной кислотой.

Упр.48. Напишите реакции получения через соответствующие галогенуглеводо-роды (а) пропионитрила из этилена, (б) бутиронитрила из пропилена, (в) динитрила янтарной кислоты из этилена, (г) нитрила винилуксусной кислоты из пропилена, (д) нитрила фенилуксусной кислоты из толуола, (е) динитрила адипиновой кислоты из ацетилена.

Упр.49. Завершите реакции:

Реакции нитрилов

3.2.1. Гидрирование нитрилов

Нитрилы легко гидрируются в амины. Гидрирование осуществляется или водородом в момент выделения (С 2 Н 5 ОН + Na) или каталитически:

Упр.50. Напишите реакции гидрирования (а) пропионитрила, (б) бутиронитрила, (в) динитрила янтарной кислоты, (г) нитрила винилуксусной кислоты, (д) нитрила фенилуксусной кислоты, (е) динитрила адипиновой кислоты.

3.2.2. Гидролиз нитрилов

Нитрилы, получаемые из алкилгалогенидов и цианидов металлов по реакции нуклеофильного замещения, являются хорошими исходными продуктами для получения карбоновых кислот. Для этого их подвергают гидролизу в присутствии кислот или оснований:


Упр.51. Какие кислоты образуются при гидролизе следующих нитрилов:

(а) пропионитрила, (б) бутиронитрила, (в) динитрила янтарной кислоты, (г) нитрила винилуксусной кислоты, (д) нитрила фенилуксусной кислоты, (е) динитрила адипиновой кислоты.

По этой схеме из доступного бензилхлорида получают фенилуксусную кислоту:


Упр.52. Предложите схему получения фенилуксусной кислоты исходя из толуола. Опишите механизмы соответствующих реакций.

Малоновую кислоту главным образом получают из хлоруксусной кислоты по схеме:

Упр.53. Исходя из этилена и других необходимых реагентов, предложите схему получения бутандиовой (янтарной) кислоты.

Упр.54. Через соответствующие галогенуглеводороды и нитрилы предложите схемы получения следующих кислот: (а) пропионовой из этилена, (б) масляной из пропилена, (в) янтарной кислоты из этилена, (г) винилуксусной кислоты из пропилена, (д) фенилуксусной кислоты из толуола, (е) адипиновой кислоты из ацетилена.

Из доступных циангидринов получают -оксикислоты:

Упр.55. Исходя из соответствующих альдегидов и кетонов и других необходимых реагентов, предложите схемы получения (а) 2-гидроксиоксипропионовой кислоты и

(б) 2-метил-2-гидроксипропионовой кислоты.

Алкоголиз нитрилов

Нитрилы взаимодействуя с хлороводородом превращаются в иминохлориды:

иминохлорид

Действие на нитрилы хлороводорода в спирте приводит к образованию гидрохлоридов иминоэфиров, дальнейший гидролиз которых дает эфиры:

Метилметакрилат в промышленности получают из ацетона через циангидрин:

ацетон ацетонциангидрин метилметакрилат

Полимер метилметакрилата - полиметилметакрилат используется в изготовлении безосколочных стекол (плексиглас).

Упр. 56. Какой продукт образуется в результате последовательного действия на бензилхлорид цианида калия, этанола в присутствии хлороводорода и наконец водой? Напишите соответствующие реакции.

Упр. 57. Какой продукт образуется в результате последовательного действия на ацетальдегид синильной кислоты, а затем метанола в присутствии серной кислоты? Напишите соответствующие реакции.

Способы получения . 1 . Окисление альдегидов и первичных спиртов - общий способ получения карбоновых кислот. В ка­честве окислителей применяются />K М n О 4 и K 2 С r 2 О 7 .

2 Другой общий способ - гидролиз галогензамещенных угле­водородов, содержащих, три атома галогена у одного атома уг­лерода. При этом образуются спирты, содержащие группы ОН у одного атома углерода - такие спирты неустойчивы и отщепля­ют воду с образованием карбоновой кислоты:/>

ЗNаОН
R-CCl 3 R — COOH + Н 2 О
-3NaCl

3 . Получение карбоновых кислот из цианидов (нитрилов) - это важный способ, позволяющий наращивать углеродную цепь при получении исходного цианида. Дополнительный атом угле­рода вводят в состав молекулы, используя реакцию замещения галогена в молекуле галогенуглеводорода цианидом натрия, например:/>

СН 3 -В r + NaCN → CH 3 — CN + NaBr .

Образующийся нитрил уксусной кислоты (метилцианид) при на­гревании легко гидролизуется с образованием ацетата аммония:

CH 3 CN + 2Н 2 О → CH 3 COONH 4 .

При подкислении раствора выделяется кислота:

CH 3 COONH 4 + HCl → СН 3 СООН + NH 4 Cl .

4 . Использование реактива Гриньяра по схеме:/>

Н 2 О
R — MgBr + СО 2 → R — COO — MgBr → R — COOH + Mg (OH ) Br

5 . Гидролиз сложных эфиров:/>

R — COOR 1 + КОН → R — COOK + R ‘ OH ,

R — COOK + HCl R COOH + KCl .

6 . Гидролиз ангидридов кислот:/>

(RCO ) 2 O + Н 2 О → 2 RCOOH .

7 . Для отдельных кислот существуют специфические спосо­бы получения./>

Муравьиную кислоту получают нагреванием оксида углерода (II ) с порошкообразным гидроксидом натрия под давлением и об­работкой полученного формиата натрия сильной кислотой:

Уксусную кислоту получают каталитическим окислением бу­тана кислородом воздуха:

2С 4 Н 10 + 5 O 2 → 4СН 3 СООН + 2Н 2 О.

Для получения бензойной кислоты можно использовать окис­ление монозамешенных гомологов бензола кислым раствором перманганата калия:

5С 6 Н 5 -СН 3 + 6 KMnO 4 + 9 H 2 SO 4 = 5С 6 Н 5 СООН + 3 K 2 SO 4 + 6 MnSO 4 + 14 H 2 O .

Кроме того, бензойную кислоту можно получить из бензальдегида с помощью реакции Канниццаро . В этой реакции бензальдегид обрабатывают 40-60%-ным раствором гидроксида натрия при комнатной температуре. Одновременное окисление и восстано­вление приводит к образованию бензойной кислоты и соответ­ственно фенилметанола (бензилового спирта):

Химические свойства . Карбоновые кислоты - более силь­ные кислоты, чем спирты, поскольку атом водорода в карбок­сильной группе обладает повышенной подвижностью благодаря влиянию группы СО. В водном растворе карбоновые кислоты диссоциируют:/>

RCOOH RCOO — + Н +

Тем не менее из-за ковалентного характера молекул карбоно­вых кислот указанное выше равновесие диссоциации достаточно сильно сдвинуто влево. Таким образом, карбоновые кислоты - это, как правило, слабые кислоты. Например, этановая (уксусная) кислота характеризуется константой диссоциации К а = 1,7*10 -5 . />

Заместители, присутствующие в молекуле карбоновой кисло­ты, сильно влияют на ее кислотность вследствие оказываемого ими индуктивного эффекта . Такие заместители, как хлор или фенильный радикал оттягивают на себя электронную плотность и, следовательно, вызывают отрицательный индуктивный эффект (-/). Оттягивание электронной плотности от карбоксильного ато­ма водорода приводит к повышению кислотности карбоновой кислоты. В отличие от этого такие заместители, как алкильные группы, обладают электронодонорными свойствами и создают положительный индуктивный эффект, +I. Они понижают кислот­ность. Влияние заместителей на кислотность карбоновых кислот наглядно проявляется в значениях констант диссоциации K a для ряда кислот. Кроме того, на силу кислоты оказывает влияние наличие сопряженной кратной связи.

Карбоновые кислоты Формула K a

Пропионовая CH 3 CH 2 COOH 1,3*10 -5

Масляная CH 3 CH 2 CH 2 COOH 1,5*10 -5

Уксусная CH 3 COOH 1,7*10 -5

Кротоновая CH 3 — CH = CH — COOH 2,0*10 -5

Винилуксусная CH 2 =CH-CH 2 COOH 3,8*10 -5

Акриловая CH 2 =CH-COOH 5,6*10 -5

Муравьиная HCOOH 6,1*10 -4

Бензойная C 6 H 5 COOH 1,4*10 -4

Хлоруксусная CH 2 ClCOOH 2,2*10 -3

Тетроновая CH 3 — C ≡ C — COOH 1,3*10 -3

Дихлоруксусная CHCl 2 COOH 5,6*10 -2

Щавелевая HOOC — COOH 5,9*10 -2

Трихлоруксусная CCl 3 COOH 2,2*10 -1

Взаимное влияние атомов в молекулах дикарбоновых кислот приводит к тому, что они являются более сильными, чем одноос­новные.

2. Образование солей. Карбоновые кислоты обладают всеми свойствами обычных кислот. Они реагируют с активными метал­лами, основными оксидами, основаниями и солями слабых кис­лот:

2 RCOOH + М g → (RCOO ) 2 Mg + Н 2 ,

2 RCOOH + СаО → (RCOO ) 2 Ca + Н 2 О,

RCOOH + NaOH RCOONa + Н 2 О,

RCOOH + NaHCO 3 → RCOONa + Н 2 О + СО 2 .

Карбоновые кислоты - слабые, поэтому сильные минераль­ные кислоты вытесняют их из соответствующих солей:

CH 3 COONa + HCl → СН 3 СООН + NaCl .

Соли карбоновых кислот в водных растворах гидролизованы:

СН 3 СООК + Н 2 О СН 3 СООН + КОН.

Отличие карбоновых кислот от минеральных заключается в возможности образования ряда функциональных производных.

3 . Образование функциональных производных карбоновых кис­лот. При замещении группы ОН в карбоновых кислотах различ­ными группами (/>X ) образуются функциональные производные кислот, имеющие общую формулу R -СО- X ; здесь R означает алкильную либо арильную группу. Хотя нитрилы имеют другую общую формулу (R - CN ), обычно их также рас­сматривают как производные карбоновых кислот, поскольку они могут быть получены из этих кислот.

Хлорангидриды получают действием хлорида фосфора (V ) на кислоты:

R-CO-OH + РС l 5 → R-CO-Cl + РОС l 3 + HCl .

Соединение примеры

Кислота

Этановая(уксусная) Бензойная кислота

хлорангидрит кислоты

Этаноилхлорид Бензоилхлорид

(ацетилхлорид)

ангидрид кислоты

Этановый(уксусный) бензойный ангидрит

Ангидрит

сложый эфир

Этилэтаноат(этилацетат) Метилбензоат

амид

Этанамид(ацетамид) Бензамид

Нитрил

Этаннитрил Бензонитрил

(ацетонитрил)

Ангидриды образуются из карбоновых кислот при действии водоотнимающих средств:

2 R — CO — OH + Р 2 О 5 → (R — CO -) 2 O + 2НРО 3 .

Сложные эфиры образуются при нагревании кислоты со спир­том в присутствии серной кислоты (обратимая реакция этерификации):

Механизм реакции этерификации был установлен методом "меченых атомов".

Сложные эфиры можно также получить при взаимодействии хлорангидридов кислот и алкоголятов щелочных металлов:

R-CO-Cl + Na-O-R’ → R-CO-OR’ + NaCl .

Реакции хлорангидридов карбоновых кислот с аммиаком при­водят к образованию амидов :

СН 3 -СО-С l + CН 3 → СН 3 -СО-CН 2 + HCl .

Кроме того, амиды могут быть получены при нагревании ам­монийных солей карбоновых кислот:

При нагревании амидов в присутствии водоотнимающих средств они дегидратируются с образованием нитрилов :

Р 2 0 5
CH 3 — CO — NH 2

CH 3 — C ≡ N + Н 2 О

Функциональные производные низших кислот — летучие жидкости. Все они легко гидролизуются с образованием исходной кислоты:

R-CO-X + Н 2 О →R-CO-OH + НХ .

В кислой среде эти реакции могут быть обратимы. Гидролиз в щелочной среде необратим и приводит к образованию солей кар­боновых кислот, например:

R-CO-OR ‘ + NaOH → R-CO-ONa + R’OH.

4 . Ряд свойств карбоновых кислот обусловлен наличием угле­водородного радикала. Так, при действии галогенов на кислоты в присутствии красного фосфора образуются галогензамещенные кислоты, причем на галоген замещается атом водорода при со­седнем с карбоксильной группой атоме углерода (а-атоме):/>

р кр

СН 3 -СН 2 -СООН + Вr 2

СН 3 -СНВr-СООН + НВr

Непредельные карбоновые кислоты способны к реакциям при­соединения:

СН 2 =СН-СООН + Н 2 → СН 3 -СН 2 -СООН,

СН 2 =СН-СООН + С l 2 → СН 2 С l -СНС l -СООН,

СН 2 =СН-СООН + HCl → СН 2 С l -СН 2 -СООН,

СН 2 =СН-СООН + Н 2 O → НО-СН 2 -СН 2 -СООН,

Две последние реакции протекают против правила Марковникова.

Непредельные карбоновые кислоты и их производные способ­ны к реакциям полимеризации .

5 . Окислительно-восстановительные реакции карбоновых кислот./>

Карбоновые кислоты при действии восстановителей в при­сутствии катализаторов способны превращаться в альдегиды, спирты и даже углеводороды:

Муравьиная кислота НСООН отличается рядом особенностей, поскольку в ее составе есть альдегидная группа:

Муравьиная кислота - сильный восстановитель и легко окис­ляется до СО 2 . Она дает реакцию "серебряного зеркала" :

НСООН + 2OH 2Ag + (NH 4) 2 CO 3 + 2NH 3 + H 2 O,

или в упрощенном виде:

C Н 3 НСООН + Аg 2 О → 2Аg + СО 2 + Н 2 О.

Кроме того, муравьиная кислота окисляется хлором:

НСООН + Сl 2 → СО 2 + 2 HCl .

В атмосфере кислорода карбоновые кислоты окисляются до СО 2 и Н 2 О:

СН 3 СООН + 2О 2 → 2СО 2 + 2Н 2 О.

6 . Реакции декарбоксширования . Насыщенные незамещенные монокарбоновые кислоты из-за большой прочности связи С-С при нагревании декарбоксилируются с трудом. Для этого необхо­димо сплавление соли щелочного металла карбоновой кислоты со щелочью:/>

Появление электронодонорных заместителей в углеводород­ном радикале способствует реакции декарбоксилирования :

Двухосновные карбоновые кислоты легко отщепляют СО 2 при нагревании:

1. Гидролиз (кислотный и щелочной)

Проходит в наиболее жестких условиях, причем в отличие от всех производных кислот в один или два этапа, промежуточным соединениями являются амиды. При эквимольном соотношении нитрила и воды можно остановить реакцию на стадии образования амида. Обычно реакцию ведут с избытком воды, получают карбоновые кислоты (кислый гидролиз) или их соли (щелочной гидролиз) и аммиак.

а) кислый гидролиз

б) щелочной гидролиз

2. Алкоголиз нитрилов – синтез сложных эфиров. Реакция идет в два этапа через образование нестабильных иминоэфиров, гидролиз которых приводит к сложным эфирам.

3. Восстановление нитрилов – синтез первичных аминов.

Контрольные вопросы к главе «ОДНООСНОВНЫЕ КАРБОНОВЫЕ КИСЛОТЫ И ИХ ФУНКЦИОНАЛЬНЫЕ ПРОИЗВОДНЫЕ»

1. Напишите структурные формулы кислот: а) пропионовой; б) масляной; в) -метилмасляной; г) валериановой; д) капроновой. Назовите их по международной номенклатуре.

2. Приведите структурные формулы кислот: а) диметилпропановой; б) 3-метилбутановой; в) 4-метил-2-этилпентановой; г) 2,2,3-триметилбутановой; д) 3,5-диметил-4-этилгексановой. Дайте этим соединениям другие названия.

3. Какое строение имеют следующие кислоты: а) акриловая; б) кротоновая; в) винилуксусная? Назовите их по международной номенклатуре. Для какой кислоты возможна цис - итранс- изомерия?

4. Какую группу атомов называют кислотным остатком или ацилом? Приведите ацилы, соответствующие следующим кислотам: а) муравьиной; б) уксусной; в) пропионовой; г) масляной. Назовите их.

5. Обьясните, почему: а) уксусная кислота кипит при более высокой температуре, чем этиловый спирт (т.кип. 118C и 78C соответственно); б) низшие кислоты хорошо растворимы в воде; в) температура плавления щавелевой кислоты существенно выше, чем у уксусной кислоты (т.пл. 189C и 16,5C соответственно); г) дикарбоновые кислоты не обладают неприятным запахом, характерным для низкомолекулярных монокарбоновых кислот.

6. С помощью индуктивного и мезомерных эффектов обьясните влияние карбоксильной группы на углеводородный остаток в кислотах: а) пропионовой; б) акриловой; в) винилуксусной. Укажите в радикале наиболее активные атомы водорода, отметьте дробными зарядами распределение -электронной плотности.

7. Обьясните изменения кислотности в приведенных ниже рядах:

8. Какая кислота в каждой паре более сильная и почему: а) муравьиная и уксусная; б) уксусная и триметилуксусная; в) -хлормасляная и-хлормасляная; г) пропионовая и акриловая.

9. Напишите уравнения реакций пропионовой кислоты с указанными реагентами: а) Zn; б) NaOH; в) NaHСO 3 ; г) NН 4 OH; д) Са(ОН) 2 . Какое свойство пропионовой кислоты проявляется в этих реакциях? Назовите полученные соединения. Какие из этих реакций применяются для качественного обнаружения карбоксильной группы в органических соединениях?

10. Напишите схему этерификации пропионовой кислоты метиловым спиртом в присутствии серной кислоты. Приведите механизм.

11. Приведите схемы кислотного и щелочного гидролиза этилпропионата. Обьясните, почему щелочи катализируют только гидролиз сложных эфиров, но не их образование.

12. Напишите схемы реакций:

Назовите продукты. Что получится, если на образовавшиеся соединения подействовать этиловым спиртом, диметиламином? Приведите уравнения последних реакций, рассмотрите механизм одной из них.

13. Напишите схему и механизм реакции ацетата натрия с хлористым ацетилом, хлористым пропионилом. Что получится, если уксусный ангидрид нагреть с пропиловым спиртом? Приведите схему и механизм этого превращения.

14. Назовите соединения, являющиеся продуктами следующих реакций:

Сравните осно́вные свойства продуктов с исходными аминами.

15. Какой химический процесс называют ацилированием? Приведите примеры реакций N- и О-ацилирования. Сопоставьте ацилирующую способность следующих соединений: а) СН 3 СН 2 СOOH; б) СН 3 СН 2 СОСl; в) СН 3 СН 2 СООСН 3 ; г) (СН 3 СН 2 СО) 2 O; д) СН 3 СН 2 СОNН 2 . Какие функциональные произодные кислот являются наиболее сильными ацилирующими реагентами?

16. Напишите схему гидролиза производных масляной кислоты: а) хлорангидрида; б) ангидрида; в) сложного эфира; г) амида. Обьясните каталитическое действие кислот и оснований в этом процессе.

17. Какие соединения образуются при действии на этилацетат следующих реагентов: а) Н 2 О (Н + ); б) Н 2 О (NaOH); в) СН 3 ОН (Н + ); г) СН 3 СН 2 СН 2 ОН (кат. RO); д) NН 3 , t ; e) LiAlН 4 (эфир), затем Н 2 О? Приведите полные уравнения реакций.

18. Сравните основные и кислотные свойства соединений: а) этиламина; б) ацетамида; в) N,N -диметиацетамида. Дайте обьяснения имеющимся отличиям. Напишите реакции этих соединений сHCl в эфире иNaNН 2 в 3 , если есть взаимодействие.

19. Назовите соединения, образующиеся из амида масляной кислоты со следующими реагентами: а) Н 2 О (Н + ); б) Br 2 +KOH; в) LiAlH 4 (эфир), затем Н 2 О; г) Р 2 О 5 , t ; д) НNO 2 2 О).

20.Напишите схемы взаимодействия нитрила изомасляной кислоты с указанными реагентами: а) Н 2 О, Н + , t ; б) CН 3 СН 2 MgBr, затем Н 2 О; в) LiAlН 4 . Назовите продукты реакций.

21. Напишите реакции акриловой кислоты со следующими соединениями: а) Na 2 СO 3 ; б) СН 3 СН 2 ОН (Н + ); в) SOСl 2 ; г) НBr; д) Br 2 . Приведите механизм реакции сHBr .

22. Для каждой пары соединений приведите химическую реакцию, позволяющие отличить эти соединения: а) НСООН и СН 3 СООН; б) СН 3 СООН и СН 3 СООС 2 Н 5 ; в) СН 3 СН 2 СООН и СН 2 =СНCOOH; г) СН 2 =СНCOOH и НС СCOOH; д) СН 3 СОN(СН 3 ) 2 и (СН 3 СН 2 ) 3 N; е) СН 3 СОNН 2 и СН 3 СООNН 4 .

23. Напишите уравнения реакций. Назовите исходные и конечные соединения:

24. Назовите кислоты, являющиеся продуктами следующих реакций:

25. Приведите схемы получения изомасляной кислоты из соответствующих соединений указанными методами: а) окислением спирта; б) гидролизом нитрила; в) реакцией Гриньяра; г) алкилированием малонового эфира.

26. Получите пропионовую кислоту из следующих соединений: а) пропанола-1; б) пропена; в) бромистого этила.

27. Напишите схемы получения из пропионовой кислоты её производных: а) натриевой соли; б) кальциевой соли; в) хлорангидрида; г) амида; д) нитрила; е) ангидрида; ж) этилового эфира.

28. Назовите соединения и приведите схемы их синтеза из соответствующих кислот: а) СН 3 СН 2 СООСН 3 ; б) (СН 3 ) 2 СНСОNН 2 ; в) СН 3 СН 2 СН 2 СN .

29. Заполните схемы превращений. Назовите все полученные соединения:

30. Действием каких реагентов и в каких условиях можно осуществить указанные превращения (все соединения назовите).

1. Ангидриды карбоновых кислот

Ангидриды карбоновых кислот представляют собой продукты отщепления молекулы воды от двух молекул кислоты.

1.1. Способы получения ангидридов карбоновых кислот

Ангидриды карбоновых кислот, как мы только что видели (3.1), могут быть получены из хлорангидридов и солей карбоновых кислот. Кроме того они могут быть получены из ацилхлоридов и карбоновых кислот в присутствии пиридина:

ацилхлоорид кислота пиридин ангидрид пиридинийхлорид

Ангидриды многих карбоновых кислот образуются при нагревании соответствующих карбоновых кислот, причем при этом часто используются водоотнимающие средства. Так, уксусный ангидрид получают нагреванием уксусной кислоты с концентрированной серной кислотой:

(28)

уксусный ангидрид

В качестве дегидратирующего агента иногда используют дешевый уксусный ангидрид:

Упр.19. Ангидрид бензойной кислоты может быть получен добавлением одного мольэквивалента воды к двум мольэквивалентам бензоилхлорида. Напишите эту реакцию.

Циклические ангидриды дикарбоновых кислот часто образуются при простом их нагревании:

(31)

янтарная кислота янтарный ангидрид

Промышленным методом получения малеинового ангидрида служит окисление бензола или 2-бутена воздухом:

(32)

Фталевый ангидрид получают в промышленности окислением нафталина или о-ксилола:

(33)

Уксусный ангидрид в промышленности получают окислением уксусного альдегида кислородом воздуха в присутствии медно-кобальтового катализатора:

Упр.20. Малеиновая кислота превращается в малеиновый ангидрид при 200 о С. Для получения малеинового ангидрида из фумаровой кислоты требуется значительно более высокая температура. Чем это объясняется? Напишите сооветствующие реакции.

Упр.21. Напишите реакции пропионового ангидрида с (а) водой, (б) этанолом, (в) аммиаком, (г) этиламином и опишите их механизм.

Упр.22. Каковы техничесие методы получения уксусного ангидрида? Каково его промышленное применение?

Упр.23. Завершите реакции

1.2. Реакции ангидридов карбоновых кислот

Ангидриды карбоновых кислот вступают в те же реакции, что и хлорангидриды:

(35)

метилацетат

(М 6)

(37)

ацетамид

Соединения, содержащие ацетильные группы, чаще всего получают из уксусного ангидрида: он дешев, легко доступен, не очень летуч и не выделяет коррозионного HCl.

(38)

уксусный ангидрид нилин ацетанилид

(М 7)

Упр.24. Напишите реакции ацетангидрида (а) с анилином и (б) салициловой кислотой и опишите их механизм.


Формально кетены можно рассматривать как внутренние ангидриды монокарбоновых кислот RCH=C=O. Простейший кетен СН 2 =С=О называют просто кетеном.

Кетен получают высокотемпературной дегидратацией кислот

(39)

или пиролизом ацетона

Кетен вступает в реакции присоединения с образованием тех же продуктов, которые могут быть получены из ацетангидрида и ацетилхлорида:

Упр. 25. Напишите реакции кетена с (а) водой, (б) 1-пропанолом, (в) фенолом, (г) метиламином, (д) анилинном.

Кетен легко димеризуется в дикетен:

Дикетен вступает в реакции присоединения по схеме:

ацетоуксусный эфир

Упр. 26. Напишите реакции дикетена с (а) водой, (б) матанолом, (в) аммиаком, (г) анилином.


3. Нитрилы

Нитрилы называют различными способами:

CH 3 CN CH 2 =CHCN PhCN NC(CH 2) 4 CN

этаннитрил пропеннитрил бензолкарбонитрил адипонитрил

(ацетонитрил) (акрилонитрил) (бензонитрил)

3.1. Способы получение нитрилов

3.1.1. Получение нитрилов дегидратацией амидов

Дегидратация амидов, о которой мы говорили в предыдущем разделе может служить последней стадией в цепи превращений карбоновой кислоты в нитрил этой кислоты:

Все эти реакции часто совмещают в одном процессе, пропуская смесь карбоновой кислоты и аммиака через окись алюминия при 500 о С:

Упр.46. Напишите реакцию промышленного метода получения адипонитрила из адипиновой кислоты.

3.1.2. Получение нитрилов окислительным аммонолизом углеводородов

При изучении окисления углеводородов мы видели, что синильную кислоту (нитрил муравьиной кислоты) и нитрилы других кислот получают окислительным аммонолизом соответствующих углеводородов по схеме:

Упр.47. Напишите реакции получения (а) акрилонитрила, (б) бензонитрила, (в) ацетонитрила и (г) нитрила терефталевой кислоты окислительным амонолизом соответствующих углеводородов.

3.1.3. Получение нитрилов по реакции Кольбе

При взаимодействии галогенуглеводородов с цианидом калия в водном этаноле по механизму S N 2 образуются нитрилы:

Поскольку цианид-анион является амбидентным ионом, в качестве побочного продукта образуются изонитрилы, которые удаляют встряхивая реакционную смесь с разбавленной соляной кислотой.

Упр.48. Напишите реакции получения через соответствующие галогенуглеводо-роды (а) пропионитрила из этилена, (б) бутиронитрила из пропилена, (в) динитрила янтарной кислоты из этилена, (г) нитрила винилуксусной кислоты из пропилена, (д) нитрила фенилуксусной кислоты из толуола, (е) динитрила адипиновой кислоты из ацетилена.

Упр.49. Завершите реакции:

(а)(б)

3.2. Реакции нитрилов

3.2.1. Гидрирование нитрилов

Нитрилы легко гидрируются в амины. Гидрирование осуществляется или водородом в момент выделения (С 2 Н 5 ОН + Na) или каталитически:

Упр.50. Напишите реакции гидрирования (а) пропионитрила, (б) бутиронитрила, (в) динитрила янтарной кислоты, (г) нитрила винилуксусной кислоты, (д) нитрила фенилуксусной кислоты, (е) динитрила адипиновой кислоты.

3.2.2. Гидролиз нитрилов

Нитрилы, получаемые из алкилгалогенидов и цианидов металлов по реакции нуклеофильного замещения, являются хорошими исходными продуктами для получения карбоновых кислот. Для этого их подвергают гидролизу в присутствии кислот или оснований:

Упр.51. Какие кислоты образуются при гидролизе следующих нитрилов:

(а) пропионитрила, (б) бутиронитрила, (в) динитрила янтарной кислоты, (г) нитрила винилуксусной кислоты, (д) нитрила фенилуксусной кислоты, (е) динитрила адипиновой кислоты.

По этой схеме из доступного бензилхлорида получают фенилуксусную кислоту:

(87)

Упр.52. Предложите схему получения фенилуксусной кислоты исходя из толуола. Опишите механизмы соответствующих реакций.

Малоновую кислоту главным образом получают из хлоруксусной кислоты по схеме:

Упр.53. Исходя из этилена и других необходимых реагентов, предложите схему получения бутандиовой (янтарной) кислоты.

Упр.54. Через соответствующие галогенуглеводороды и нитрилы предложите схемы получения следующих кислот: (а) пропионовой из этилена, (б) масляной из пропилена, (в) янтарной кислоты из этилена, (г) винилуксусной кислоты из пропилена, (д) фенилуксусной кислоты из толуола, (е) адипиновой кислоты из ацетилена.

Из доступных циангидринов получают a-оксикислоты:

(89)

Упр.55. Исходя из соответствующих альдегидов и кетонов и других необходимых реагентов, предложите схемы получения (а) 2-гидроксиоксипропионовой кислоты и

(б) 2-метил-2-гидроксипропионовой кислоты.

3.3. Алкоголиз нитрилов

Нитрилы взаимодействуя с хлороводородом превращаются в иминохлориды:

(90)

иминохлорид

Действие на нитрилы хлороводорода в спирте приводит к образованию гидрохлоридов иминоэфиров, дальнейший гидролиз которых дает эфиры:

Метилметакрилат в промышленности получают из ацетона через циангидрин:

ацетон ацетонциангидрин метилметакрилат

Полимер метилметакрилата - полиметилметакрилат используется в изготовлении безосколочных стекол (плексиглас).

Упр. 56. Какой продукт образуется в результате последовательного действия на бензилхлорид цианида калия, этанола в присутствии хлороводорода и наконец водой? Напишите соответствующие реакции.

Упр. 57. Какой продукт образуется в результате последовательного действия на ацетальдегид синильной кислоты, а затем метанола в присутствии серной кислоты? Напишите соответствующие реакции.


4. Цианамид

Большое практическое значение имеет амид синильной кислоты - цианамид. В промышленности его получают из карбида кальция и азота при 1000-1100 о С или же при 650-800 о С в присутствии примерно 10% хлорида кальция.

цианамид кальция

Образующаяся смесь цианамида кальция и сажи непосредственно используется в качестве удобрения. При действии на цианамид кальция серной кислоты получается цианамид:

В твердом состоянии и в растворах цианамид находится в равновесии с карбодиимидом:

цианамид карбодиимид

Частичным гидролизом цианамида получают мочевину:

(94)

При действии на цианамид сероводорода образуется тиомочевина:

(95)

тиомочевина

Его взаимодействие с аммиаком приводит к образованию гуанидина:

(96)

гуанидин

При нагревании цианамид превращается в меламин.

1. Гидролиз (кислотный и щелочной)

Проходит в наиболее жестких условиях, причем в отличие от всех производных кислот в один или два этапа, промежуточным соединениями являются амиды. При эквимольном соотношении нитрила и воды можно остановить реакцию на стадии образования амида. Обычно реакцию ведут с избытком воды, получают карбоновые кислоты (кислый гидролиз) или их соли (щелочной гидролиз) и аммиак.

а) кислый гидролиз








б) щелочной гидролиз

2. Алкоголиз нитрилов - синтез сложных эфиров. Реакция идет в два этапа через образование нестабильных иминоэфиров, гидролиз которых приводит к сложным эфирам


3. Восстановление нитрилов - синтез первичных аминов

Контрольные вопросы к главе «ОДНООСНОВНЫЕ КАРБОНОВЫЕ КИСЛОТЫ И ИХ ФУНКЦИОНАЛЬНЫЕ ПРОИЗВОДНЫЕ»

  • 1. Напишите структурные формулы кислот: а) пропионовой; б) масляной; в) -метилмасляной; г) валериановой; д) капроновой. Назовите их по международной номенклатуре.
  • 2. Приведите структурные формулы кислот: а) диметилпропановой; б) 3-метилбутановой; в) 4-метил-2-этилпентановой; г) 2,2,3-триметилбутановой; д) 3,5-диметил-4-этилгексановой. Дайте этим соединениям другие названия.
  • 3. Какое строение имеют следующие кислоты: а) акриловая; б) кротоновая; в) винилуксусная? Назовите их по международной номенклатуре. Для какой кислоты возможна цис- и транс-изомерия?
  • 4. Какую группу атомов называют кислотным остатком или ацилом? Приведите ацилы, соответствующие следующим кислотам: а) муравьиной; б) уксусной; в) пропионовой; г) масляной. Назовите их.
  • 5. Обьясните, почему: а) уксусная кислота кипит при более высокой температуре, чем этиловый спирт (т.кип. 118C и 78C соответственно); б) низшие кислоты хорошо растворимы в воде; в) температура плавления щавелевой кислоты существенно выше, чем у уксусной кислоты (т.пл. 189C и 16,5C соответственно); г) дикарбоновые кислоты не обладают неприятным запахом, характерным для низкомолекулярных монокарбоновых кислот.
  • 6. С помощью индуктивного и мезомерных эффектов обьясните влияние карбоксильной группы на углеводородный остаток в кислотах: а) пропионовой; б) акриловой; в) винилуксусной. Укажите в радикале наиболее активные атомы водорода, отметьте дробными зарядами распределение -электронной плотности.
  • 7. Обьясните изменения кислотности в приведенных ниже рядах:

  • 8. Какая кислота в каждой паре более сильная и почему: а) муравьиная и уксусная; б) уксусная и триметилуксусная; в) -хлормасляная и -хлормасляная; г) пропионовая и акриловая.
  • 9. Напишите уравнения реакций пропионовой кислоты с указанными реагентами: а) Zn; б) NaOH; в) NaHСO3; г) NН4OH; д) Са(ОН)2. Какое свойство пропионовой кислоты проявляется в этих реакциях? Назовите полученные соединения. Какие из этих реакций применяются для качественного обнаружения карбоксильной группы в органических соединениях?




























  • 10. Напишите схему этерификации пропионовой кислоты метиловым спиртом в присутствии серной кислоты. Приведите механизм.
  • 11. Приведите схемы кислотного и щелочного гидролиза этилпропионата. Обьясните, почему щелочи катализируют только гидролиз сложных эфиров, но не их образование.
  • 12. Напишите схемы реакций:

Назовите продукты. Что получится, если на образовавшиеся соединения подействовать этиловым спиртом, диметиламином? Приведите уравнения последних реакций, рассмотрите механизм одной из них.

13. Напишите схему и механизм реакции ацетата натрия с хлористым ацетилом, хлористым пропионилом. Что получится, если уксусный ангидрид нагреть с пропиловым спиртом? Приведите схему и механизм этого превращения.

14. Назовите соединения, являющиеся продуктами следующих реакций:

Сравните осномвные свойства продуктов с исходными аминами.

  • 15. Какой химический процесс называют ацилированием? Приведите примеры реакций N- и О-ацилирования. Сопоставьте ацилирующую способность следующих соединений: а) СН3СН2СOOH; б) СН3СН2СОСl; в) СН3СН2СООСН3; г) (СН3СН2СО)2O; д) СН3СН2СОNН2. Какие функциональные произодные кислот являются наиболее сильными ацилирующими реагентами?
  • 16. Напишите схему гидролиза производных масляной кислоты: а) хлорангидрида; б) ангидрида; в) сложного эфира; г) амида. Обьясните каталитическое действие кислот и оснований в этом процессе.
  • 17. Какие соединения образуются при действии на этилацетат следующих реагентов: а) Н2О (Н+); б) Н2О (NaOH); в) СН3ОН (Н+); г) СН3СН2СН2ОН (кат. RO); д) NН3, t; e) LiAlН4 (эфир), затем Н2О? Приведите полные уравнения реакций.
  • 18. Сравните основные и кислотные свойства соединений: а) этиламина; б) ацетамида; в) N,N-диметиацетамида. Дайте обьяснения имеющимся отличиям. Напишите реакции этих соединений с HCl в эфире и NaNН2 в NН3, если есть взаимодействие.
  • 19. Назовите соединения, образующиеся из амида масляной кислоты со следующими реагентами: а) Н2О (Н+); б) Br2+KOH; в) LiAlH4 (эфир), затем Н2О; г) Р2О5 , t; д) НNO2 (Н2О).
  • 20. Напишите схемы взаимодействия нитрила изомасляной кислоты с указанными реагентами: а) Н2О, Н+, t; б) CН3СН2MgBr, затем Н2О; в) LiAlН4. Назовите продукты реакций.
  • 21. Напишите реакции акриловой кислоты со следующими соединениями: а) Na2СO3; б) СН3СН2ОН (Н+); в) SOСl2; г) НBr; д) Br2. Приведите механизм реакции с HBr.
  • 22. Для каждой пары соединений приведите химическую реакцию, позволяющие отличить эти соединения: а) НСООН и СН3СООН; б) СН3СООН и СН3СООС2Н5; в) СН3СН2СООН и СН2=СНCOOH; г) СН2=СНCOOH и НС?СCOOH; д) СН3СОN(СН3)2 и (СН3СН2)3N; е) СН3СОNН2 и СН3СООNН4.

23. Напишите уравнения реакций. Назовите исходные и конечные соединения:


24. Назовите кислоты, являющиеся продуктами следующих реакций:

  • 25. Приведите схемы получения изомасляной кислоты из соответствующих соединений указанными методами: а) окислением спирта; б) гидролизом нитрила; в) реакцией Гриньяра; г) алкилированием малонового эфира.
  • 26. Получите пропионовую кислоту из следующих соединений: а) пропанола-1; б) пропена; в) бромистого этила.
  • 27. Напишите схемы получения из пропионовой кислоты её производных: а) натриевой соли; б) кальциевой соли; в) хлорангидрида; г) амида; д) нитрила; е) ангидрида; ж) этилового эфира.
  • 28. Назовите соединения и приведите схемы их синтеза из соответствующих кислот: а) СН3СН2СООСН3; б) (СН3)2СНСОNН2; в) СН3СН2СН2СN.

29. Заполните схемы превращений. Назовите все полученные соединения:




© 2024
gorskiyochag.ru - Фермерское хозяйство