02.08.2023

Входное сопротивление антенны. Что такое входное сопротивление антенны? Полоса пропускания антенны


входное сопротивление антенны. Считается, что оно представляет собой последовательно соединённые реактивное и активное сопротивления. Но в антенне или в фидере нет реального резистора, конденсатора или катушки индуктивности. Всё это только результат расчёта эквивалентных им сопротивлений антенной цепи. Пусть в качестве нагрузки будет использован некий «чёрный ящик», на входной разъём которого подаётся ВЧ напряжение. На этом разъёме реально можно измерить мгновенное напряжение u’ и ток i’, а также разницу фазы между ними j. Входное сопротивление есть рассчитанное активное и реактивное сопротивления, подключая к которым данное ВЧ напряжение получим точно такие же u’, i’ и j.
Известно, что такой эквивалент может иметь как последовательное (serial, Zs=Rs+jXs), так и параллельное (parallel, Zp=Rp||+jXp) соединение активных и реактивных сопротивлений. Каждому последовательному соединению активного (Rs) и реактивного (Xs) сопротивлений соответствует параллельное соединение активного (Rp) и реактивного (Xp) сопротивлений. В общем случае Rs№Rp и Xs№Xp. Привожу формулы, по которым можно пересчитать численные значения с одного соединения на другое.

Например, пересчитаем последовательное соединение Zs=40+j30W в параллельное Zp.

Чаще используют эквивалент последовательного включения, но и эквивалент параллельного включения имеет такое же практическое значение. Zs называется импедансом последовательного включения, R – резистансом, X – реактансом, а Zp импедансом параллельного включения. В параллельном включении часто используется админтанс, но это проводимость, и наглядность при его использовании сильно уменьшается. Обычно термин „импеданс“ указывает, что речь идёт о последовательном соединении эквивалентного активного и реактивного сопротивлений.

88) Мощности, подводимые к антенне и излученные антенной.

Мощность делится на две части:

1) излучаемая

2) потери на активном сопротивлении (в земле, в окружающих металлических проводниках, оттяжках, строениях и т.д.)

– излученная мощность, как для всякой линейной цепи, пропорциональна квадрату действующего значения тока в антенне.

– коэффициент пропорциональности.

Сопротивление излучения можно определить как коэффициент, связывающий антенны с в данной точке антенны .

(форма антенны, геометрические размеры, l )

– полезная мощность

Мощность потерь:

– эквивалентное сопротивление потерь отнесенное к току I

– полная мощность (подводимая к антенне)

где активное сопротивление антенны в точке запитки

Для оценки эффективности работы антенны вводят понятие КПД антенны , для увеличения необходимо уменьшение .

89) Симметричный электрический вибратор в свободном пространстве.

Приближенные законы распределения тока и заряда по вибратору.

Рис. 15. Симметричный вибратор

Симметричный вибрато – два одинаковых плеча по размерам и форме, между которыми включается генератор.

До разработки строгой теории симметричного вибратора (конец 30-х начало 40-х годов) при расчете поля вибратора применялся приближенный метод. В его основе лежит предположение о синусоидальном распределении тока по вибратору (закон стоячих волн) связанное с некоторой внешней аналогией между симметричным вибратором и 2-х проводной линией разомкнутой на конце.

Поляризация электромагнитных волн

Поляризация электромагнитных волн (франц. polarisation; первоисточник: греч. polos ось, полюс) - нарушение осевой симметрии поперечной волны относительно направления распространения этой волны. В неполяризованной волне колебания векторов s и v смещения и скорости в случае упругих волн или векторов Е и Н напряжённостей электрических и магнитного полей в случае электромагнитных волн в каждой точке пространства по всевозможным направлениям в плоскости, перпендикулярной направлению распространения волны, быстро и беспорядочно сменяют друг друга, так что ни одно из этих направлений колебаний не является преимущественным. Поперечную волну назовут поляризованной, если в каждой точке пространства направление колебаний сохраняется неизменным или изменяется с течением времени по определённому закону. Плоскополяризованной (линейно-поляризованной) назовут волну с неизменным направлением колебаний, соответственно векторов s или Е. Если концы этих векторов описывают с течением времени окружности или эллипсы, то волну назовут циркулярно или эллиптически - поляризованной. Поляризованная волна может возникнуть: вследствие отсутствия осевой симметрии в возбуждающем волну излучателе; при отражении и преломлении волн на границе раздела двух сред (см. Брюстера закон); при распространении волны в анизотропной среде (см. Двойное лучепреломление).
(см. Большой энциклопедический политехнический словарь)
На практике: если сигнал с телецентра идёт в горизонтальной поляризации, то вибраторы антенны должны быть расположены параллельно плоскости земли, если сигнал передаётся в вертикальной поляризации, то вибраторы антенны должны быть расположены перпендикулярно плоскости земли, если сигналы передаются в двух поляризациях, то нужно использовать две антенны и сигналы с них суммировать. В зоне уверенного приёма можно поставить одну антенну под углом 45 градусов к плоскости земли.
Спутниковый телевизионный сигнал передаётся на Землю в линейной и в круговой поляризации. Для приёма таких сигналов используют разные конверторы: например, для Континент ТВ- линейный конвертор, а для Триколор ТВ - циркулярный конвертор. Форма и размер тарелки не оказывает на поляризацию никакого влияния.

Важным параметром антенн является входное сопротивление: (входной импеданс антенны), характеризующее её как нагрузку для передающего устройства или фидера. Входным сопротивлением антенны называется отношение напряжения между точкой подключения (точкой возбуждения) антенны к фидеру, к току в этих точках. Если антенна питается волноводом, то входное сопротивление определяется отражениями, возникающими в волноводном тракте. Входное сопротивление антенны состоит из суммы сопротивления излучения антенны и сопротивления потерь: Z = R(изл) + R (пот). R(изл) - в общем случае величина комплексная. В резонансе реактивная составляющего входного импеданса должна быть равна нулю. На частотах выше резонансной импеданс имеет - индуктивный характер, а на частотах ниже резонансной - емкостной характер, что вызывает потерю мощности на границах рабочей полосы антенны. R (пот) - сопротивление потерь антенны зависит от многих факторов, например, от близости ее к поверхности Земли или проводящим поверхностям, омических потерь в элементах и проводах антенны, потерь в изоляции. Входной импеданс антенны должен быть согласован с волновым сопротивлением фидерного тракта (или с выходным сопротивлением передатчика) так, чтобы обеспечить в последнем режим, близкий к режиму бегущей волны.
У телевизионных антенн входной импеданс: логопериодической антенны - 75 Ом, у волнового канала - 300 Ом. Для антенн волнового канала при использовании телевизионного кабеля с волновым сопротивлением 75 Ом требуется согласующее устройство, ВЧ трансформатор.



Коэффициент стоячей волны (KСВ)

Коэффициент стоячей волны характеризует степень согласования антенны с фидером, а также согласование выхода передатчика и фидера. На практике всегда часть передаваемой энергии отражается и возвращается в передатчик. Отраженная энергия вызывает перегрев передатчика и может его повредить.

КСВ рассчитывается следующим образом:
KСВ = 1 / KБВ = (U пад + U отр) / (U пад - U отр), где U пад и U отр - амплитуды падающей и отраженной электромагнитных волн.
С амплитудами падающей (U пад) и отраженной (U отр) волн в линии КБВ связано соотношением: KБВ = (U пад + U отр) / (U пад - U отр)
В идеале КСВ=1, значения до 1,5 считаются приемлемым.

Диаграмма направленности (ДН)

Диаграмма направленности является одной из самых наглядных характеристик приёмных свойств антенны. Построение диаграмм направленности производится в полярных или в прямоугольных (декартовых) координатах. Рассмотрим для примера построенную в полярных координатах диаграмму направленности антенны типа «волновой канал» в горизонтальной плоскости (рис. 1). Координатная сетка состоит из двух систем линий. Одна система линий представляет собой концентрические окружности с центром в начале координат. Окружности наибольшего радиуса соответствует максимальной ЭДС, значение которой условно принято равным единице, а остальные окружности - промежуточные значения ЭДС от единицы до нуля. Другая система линий, образующих координатную сетку, представляет собой пучок прямых, которые делят центральный угол в 360° на равные части. В нашем примере этот угол разделен на 36 частей по 10° в каждой.

Положим, что радиоволна приходит с направления, показанного на рис. 1 стрелкой (угол 10°). Из диаграммы направленности видно, что этому направлению прихода радиоволны соответствует максимальная ЭДС на клеммах антенны. При приеме радиоволн, приходящих с любого другого направления, ЭДС на клеммах антенны будет меньше. Например, если радиоволны приходят под углами 30 и 330° (т. е. под углом 30° к оси антенны со стороны директоров), то значение ЭДС будет равно 0,7 максимальной, под углами 40 и 320° - 0,5 максимальной и т. д.

На диаграмме направленности (рис. 1) видны три характерные области - 1, 2 и 3. Область 1, которой соответствует наибольший уровень принятого сигнала, называют основным, или главным лепестком диаграммы направленности. Области 2 и 3, находящиеся со стороны рефлектора антенны, носят название задних и боковых лепестков диаграммы направленности. Наличие задних и боковых лепестков свидетельствует о том, что антенна принимает радиоволны не только спереди (со стороны директоров), но и сзади (со стороны рефлектора), что снижает помехоустойчивость приема. В связи с этим при настройке антенны стремятся уменьшить число и уровень задних и боковых лепестков.
Описанную диаграмму направленности, характеризующую зависимость ЭДС на клеммах антенны от направления прихода радиоволны, часто называют диаграммой направленности по «полю», так как ЭДС пропорциональна напряженности электромагнитного поля в точке приема. Возведя в квадрат ЭДС, соответствующую каждому направлению прихода радиоволны, можно получить диаграмму направленности по мощности (пунктирная линия на рис. 2).
Для численной оценки направленных свойств антенны пользуются понятиями угла раствора основного лепестка диаграммы направленности и уровня задних и боковых лепестков. Углом раствора основного лепестка диаграммы направленности называют угол, в пределах которого ЭДС на клеммах антенны спадает до уровня 0,7 от максимальной. Угол раствора можно также определить, пользуясь диаграммой направленности по мощности, по ее спаду до уровня 0,5 от максимальной (угол раствора по «половинной» мощности). В обоих «случаях численное значение угла раствора получается, естественно, одним и тем же.
Уровень задних и боковых лепестков диаграммы направленности по напряжениюопределяется как отношение ЭДС на клеммах антенны при приеме со стороны максимума заднего или бокового лепестка к ЭДС со стороны максимума основного лепестка. Когда антенна имеет несколько задних и боковых лепестков различной величины, то указывается уровень наибольшего лепестка.

Коэффициент направленного действия (КНД)

Коэффициент направленного действия: (КНД) передающей антенны - отношение квадрата напряженности поля, создаваемой антенной в направлении главного лепестка, к квадрату напряженности поля создаваемой ненаправленной или направленной эталонной антенной (полуволновый вибратор - диполь, коэффициент направленного действия которого по отношению к гипотетической ненаправленной антенне равен 1,64 или 2,15 дБ) при одинаковой подводимой мощности. (КНД) является безразмерной величиной, может выражаться в децибелах (дБ, дБи, дБд). Чем уже главный лепесток (ДН) и меньше уровень боковых лепестков, тем больше КНД.
Реальный выигрыш антенны по мощности относительно гипотетического изотропного излучателя или полуволнового вибратора характеризуется коэффициентом усиления по мощности КУ(Мощ.), который связан с (КНД) соотношением:
КУ(Мощ.) = КНД - КПД (коэффициент полезного действия антенны)

Коэффициент усиления (КУ)

Коэффициент усиления (КУ) антенны - отношение мощности на входе эталонной антенны к мощности, подводимой к входу рассматриваемой антенны, при условии, что обе антенны создают в данном направлении на одинаковом расстоянии равные значения напряженности поля при излучении мощности, а при приёме - отношение мощностей, выделяемых на согласованных нагрузках антенн.
КУ является безразмерной величиной, может выражаться в децибелах (дБ, дБи, дБд).
Усиление антенны характеризуется выигрышем по мощности (напряжению), которая выделяется в согласованной нагрузке, подключенной к выходным зажимам рассматриваемой антенны, по сравнению с "изотропной" (то есть имеющей круговую ДН) антенной или, например, полуволновым вибратором. При этом надо учитывать направленные свойства антенны и потери в ней (КПД). У телевизионных приёмных антенн (КУ) равен, примерно, коэффициенту направленного действия (КНД) антенны, т.к. коэффициент полезного действия таких антенн находится в пределах 0,93…0,96. Коэффициент усиления широкополосных антенн зависит от частоты и неравномерен во всей полосе частот. В паспорте на антенну нередко указывают максимальное значение (КУ).

Коэффициент полезного действия (КПД)

В режиме передачи, (КПД) - это отношение мощности излучаемой антенной к мощности, подведённой к ней, так как существуют потери в выходном каскаде передатчика, в фидере и самой антенне, КПД антенны всегда меньше 1. В приёмных телевизионных антеннах КПД находится в пределах 0,93…0,96.

Входной импеданс антенны

Входной импеданс антенны (или входное сопротивление антенны) - основная характеристика передающей и приёмной антенны, которая определяется как отношение высокочастотного напряжения и тока питания

Входной импеданс антенны определяется как сумма сопротивления излучения и сопротивления потерь антенны .

Сопротивление потерь , в свою очередь складывается из омических потерь в элементах и проводах антенны, потерь в изоляции (в связи с утечками), сопротивление потерь в земле и тепловые потери в окружающих предметах, лежащих в ближней зоне антенны.

Для повышения КПД антенны необходимо стремиться к согласованию входного импеданса антенны с волновым сопротивлением линии, то есть к выполнению их равенства, а также к уменьшению потерь в антенне.

См. также

Литература

  • Антенна//Физический энциклопедический словарь/Гл. ред. А. М. Прохоров - М.: Сов. энциклопедия, 1983. - 928с., стр. 24-28
  • Драбкин А. Л., Зузенко В. Л., Кислов А. Л. Антенно-фидерные устройства. Изд-е 2-е, испр., доп. и перераб. М.: «Сов. радио», 1974, С. 536, стр. 11
  • Ротхамель, Карл Антенны, Изд-ие 11-е, переработанное и дополненное инженером Алоизом Кришке, 2005, С.

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Входной импеданс антенны" в других словарях:

    Двухполюсник и его эквивалентная схема Внутреннее сопротивление двухполюсника импеданс в эквивалентной схеме двухполюсника, состоящей из последовател … Википедия

    Антенна радиотелескопа РТ 7.5 МГТУ им. Баумана. РФ, Московская область, Дмитровский район. Диаметр зеркала 7,5 метра, рабочий диапазон длин волн: 1 4 мм Антенна устройство для излучения и приёма радиоволн (разновидности электромагнитного… … Википедия

    В гравитации, Максвеллоподобные гравитационные уравнения составляют систему из четырех уравнений в частных производных, которые описывают свойства электроподобных и магнитоподобных гравитационных полей, а также их источников зарядовой плотностью… … Википедия

    Конструкция, используемая для передачи или приема радиоволн (т.е. электромагнитных излучений с длинами волн в пределах от АНТЕННА20 000 м до АНТЕННА1 мм). В качестве примеров использования антенн можно привести радио и телевещание, дальнюю… … Энциклопедия Кольера

    электрический - 3.45 электрический [электронный, программируемый электронный]; Е/Е/РЕ (electrical/electronic/ programmable electronic; Е/Е/РЕ) основанный на электрической и/или электронной, и/или программируемой электронной технологии. Источник … Словарь-справочник терминов нормативно-технической документации

    - (трансформирующие линии, последовательные кабельные трансформаторы, трансформаторы полных сопротивлений) отрезки коаксиальных линий с характерными свойствами, предназначенные для согласования сопротивлений в СВЧ коаксиальном тракте. Коаксиальные… … Википедия

    Коаксиальные трансформаторы (трансформирующие линии, последовательные кабельные трансформаторы, трансформаторы полных сопротивлений) отрезки коаксиальных линий с характерными свойствами, предназначенные для согласования сопротивлений в СВЧ… … Википедия

В. Поляков, RA3AAE

В этой статье нет ничего нового, она позволяет лишь взглянуть под иным углом зрения на давно известные факты, а также может послужить общеобразовательным целям. Есть и немного ностальгии…

Хорошо известно, что электрически короткие проволочные или штыревые антенны (длиной менее четверти волны) имеют емкостное реактивное сопротивление X и малое активное сопротивление излучения r, причем первое растет с укорочением антенны, а второе - уменьшается. Потери в самой антенне весьма малы, это подтверждают и программы моделирования антенн, например MMANA, показывая высокий КПД. Потери возникают в согласующей катушке (удлиняющей, либо контурной) и в заземлении.

Эквивалентную схему короткой заземленной приемной антенны обычно изображают так, как на рис. 1 справа. Е обозначает напряженность поля принимаемого сигнала, а hд - действующую высоту антенны. Слева показана сама антенна и распределение тока в ней. Оно синусоидальное, но для коротких антенн его приближенно считают треугольным.

Емкостное сопротивление Х и сопротивление излучения r антенны определяют по формулам, приводимым во многих книгах и учебниках:
X = Wctg(2ph/l), и r = 160p2(hд/l)2,

где W - волновое сопротивление провода антенны.

Формулы удается упростить, введя волновое число k = 2p/l и заменив умножение на котангенс делением на тангенс, а его, в свою очередь, заменив аргументом, ввиду его малости (h << l). С учетом того, что действующая высота hд антенны в виде короткого вертикального провода равна половине геометрической h из-за треугольного распределения тока, получим:

X = W/kh, и r = 10(kh)2.

К сожалению, эквивалентная схема на рис. 1 недостаточно наглядна, поскольку не показывает реального шунтирования входа приемника антенной. Целесообразно воспользоваться правилами преобразования последовательного соединения емкости и активного сопротивления в паралельное (см. книги по теории цепей). Для нашего случая, когда r << X, они очень просты (рис. 2).


Получившаяся эквивалентная схема приемной антенны показана на рис. 3, и из нее видно, что импеданс антенны определяется параллельно включенными емкостью С и резистором R. Этот импеданс шунтирует вход приемника независимо от того, есть напряжение сигнала на антенне, или его нет. Емкость С - это просто емкость антенны, для тонкого провода ее легко найти из расчета 5...7 пФ/м, а для относительно "толстых" телескопических антенн - 8...12 пФ/м.

Сопротивление R найдем, подставив в последнюю формулу на рис. 2 найденные выше значения X и r:
R = W2/10(kh)4.

Для тонкого провода в свободном пространстве W обычно полагают равным 600 Ом. Подставляя это значение, а также k = 2p/l, получим расчетную формулу:
R = 23(l/h)4.

С ее помощью, для иллюстрации, посчитаем емкость и сопротивление короткой проволочной вертикальной антенны для частоты 1 МГц (средняя частота диапазона СВ) и полагая сопротивление заземления равным нулю.

Результаты расчета сведены в таблицу:

Высота антенны h, м 1 3 10 30
h/l 1/300 1/100 1/30 1/10
С, пФ 6 18 60 180
R, Ом 11
2.10
9
2,3.10
7
2.10
5
2,3.10
R 0,2 ТераОм 2 ГигаОм 20 МегаОм 230 килоОм

Они поражают. Из таблицы видно, что эквивалентное (параллельное входу) активное сопротивление короткой вертикальной антенны огромно. Оно практически не шунтирует вход приемника. Это позволяет при низком входном сопротивлении приемника не учитывать активное сопротивление антенны R и считать, что на вход приемника поступает только емкостный ток через С (рис. 3). Тогда напряжение на входе приемника удается рассчитать просто по закону Ома.

Пример: к 50-омному входу приемника, работающего в диапазоне СВ, подключена 3-х метровая вертикальная антенна. Ее емкостное (18 пФ) сопротивление на частоте 1 МГц более 8 кОм. При напряженности поля радиостанции 10 мВ/м наведенное на антенне напряжение будет: E.hд = 10мВ/м.1,5м = 15 мВ. Емкостный ток получается около 15мВ/8кОм = 2мкА. Помножив его на сопротивление входа (50 Ом) получаем напряжение на входе около 100 мкВ.

Из примера видно, что короткие антенны не могут развить на низкоомном входе приемника большого напряжения. В то же время на входе приемника с высокоомным входом (значительно более 8 кОм) та же антенна могла бы развить напряжение, близкое к E.hд, т. е. около 15 мВ. Именно такими и были старинные радиоприемники - одноламповые регенераторы, прямого усиления, и даже ламповые супергетеродины.

В одноконтурных регенераторах антенну подключали к контуру либо непосредственно, либо через конденсатор связи небольшой емкости (рис. 4). Непосредственное подключение (гнездо А2) годится только для совсем коротких антенн с небольшой емкостью, которая компенсируется соответствующим уменьшением контурной емкости С2. Длинную антенну нельзя включать в гнездо А2, ибо это привело бы к сильной расстройке и внесению большого затухания в контур. Ее включали в гнездо А3, причем конденсатор связи С2 в разумно спроектированных конструкциях делали регулируемым, например 8…30 пФ, что позволяло ослаблять связь с антенной при сильных сигналах и больших помехах.

Резонансное сопротивление контура достигает на частотах СВ диапазона сотен килоом, а на ДВ еще больше. В регенераторах его надо еще помножить на коэффициент регенерации, тогда получаются многие мегаомы. Как видим, старинные приемники очень хорошо подходили для работы с короткими проволочными антеннами, имея очень высокое входное сопротивление. Не изменилась ситуация и в приемниках прямого усиления с УРЧ и супергетеродинах.

В эпоху до широкого применения магнитных антенн для связи с антенной использовали катушку L1 имевшую в 4…5 раз больше витков, чем контурная. Рассчитывали, чтобы эта катушка с емкостью «стандартной» антенны образовывала резонансный контур, настроенный на частоту ниже самой нижней частоты диапазона. Тогда выравнивался коэффициент передачи входной цепи по диапазону. Расчет и графики можно найти в учебниках по радиоприемным устройствам. Но в них не упоминают другой эффект от такого решения. Сопротивление контура трансформировалось к антенне в 16…25 раз при сильной связи и несколько меньше при слабой. Опять таки входное сопротивление приемника получалось несколько мегаом и более.

Приведенные данные ясно показывают, что для экспериментов с уникальными слаботочными антеннами (метелочными, костровыми и т. д.) нужны именно приемники с высокоомным входом, включающим настроенный контур, лампу или полевой транзистор.

Измерить параметры антенны? Совсем несложно!

Правильно определенные параметры антенны в системе радиоприема - основа возможности успешного приема удаленных радиостанций. Но не всегда у радиолюбителя могут оказаться под рукой необходимые средства для подобных измерений. В данной статье автор предлагает использовать несложный метод, при котором получаются вполне приемлемые результаты.

Подвесив наружную проволочную антенну, любитель радиоприема на длинных и средних волнах (ДВ и СВ) часто задается вопросом: а каковы же ее параметры? Основных параметров два - это сопротивление потерь системы антенна-заземление rп и собственная емкость антенны относительно той же земли СА. От этих параметров зависит эффективность работы антенной системы, а следовательно, и возможность приема дальних станций, питания приемного устройства "свободной энергией" сигналов, принятых из эфира, настройки антенной системы на разные частоты и т. д.

Антенные измерения - это "терра инкогнита" для большинства радиолюбителей, и не только начинающих. Все известные методы требуют наличия мощного высокочастотного генератора и измерительного моста - аппаратуры, редко встречающейся у радиолюбителей. Часто эти два прибора объединяют, образуя фидерный или антенный омметр (так их называют), используемый, например, при настройке и регулировке антенн передающих радиоцентров . Мощный генератор ВЧ нужен потому, что на открытой "всем ветрам" антенне велико напряжение самых разных наводок, в том числе и от сигналов других радиостанций, мешающих измерениям.

В предлагаемом способе измерения генератор вообще не нужен. Мы будем измерять параметры антенны, пользуясь сигналами из эфира, благо их там предостаточно. Надо ли изготавливать специальный прибор или стенд для измерений? Это - по желанию. Учитывая, что антенны меняют не каждый день, не составит большого труда собрать простенькие измерительные цепи прямо на рабочем столе или на подоконнике, не используя даже макетных плат.

Измерение сопротивления потерь. Понадобятся ферритовый стержень от магнитной антенны с парой катушек, желательно ДВ и СВ диапазонов, переменный резистор сопротивлением 0,47...1 кОм (обязательно непроволочный), любой германиевый маломощный высокочастотный диод и вольтметр постоянного тока с высоким внутренним входным сопротивлением (не менее 0,5...1 МОм). Для идентификации принимаемых радиостанций "на слух" полезно иметь и высокоомные телефоны.

Собираем устройство по схеме рис. 1 и, перемещая стержень в катушке магнитной антенны, настраиваемся на частоту сигнала мощной местной радиостанции.


Рис. 1

Переменный резистор R1 при этом надо установить в положение нулевого сопротивления (переместить движок в верхнее по схеме положение). Момент точной настройки контура в резонанс с частотой радиостанции будет отмечен максимальным отклонением стрелки измерителя и наибольшей громкостью в телефонах. Включенные последовательно с вольтметром телефоны практически не влияют на его показания, в то же время громкость не слишком велика. Для ее увеличения на время идентификации радиостанции вольтметр можно замкнуть, переключить на низший предел измерения, где его сопротивление меньше, или включить параллельно вольтметру конденсатор емкостью порядка 0,05...0,1 мкФ, чтобы пропустить к телефонам звуковые частоты (при включении такого конденсатора звук может несколько исказиться из-за неравенства нагрузки детектора на звуковых частотах и на постоянном токе).

Отметив показания вольтметра (U1) и не изменяя настройки контура, движок переменного резистора R1 переместить до тех пор, пока показания вольтметра не уменьшатся вдвое (U2). При этом сопротивление резистора будет равно сопротивлению потерь антенной системы на данной частоте. Те же измерения можно провести и на других частотах.

Сопротивление резистора измеряют омметром, отключив его от измерительной цепи. При отсутствии омметра надо оснастить резистор ручкой с визиром и шкалой, которую проградуировать в омах по образцовому прибору.

Пользуясь приведенной методикой, удается выбрать, например, наилучший вариант заземления. В городских условиях возможны такие варианты: трубы водопровода, трубы отопления, арматура ограждения балкона и т. д., а также различные их сочетания. Ориентироваться следует на максимальный принимаемый сигнал и минимальное сопротивление потерь. В загородном доме, кроме "классического" заземления, рекомендуется попробовать водозаборную скважину или трубы водопровода, металлическую сетку-ограду, крышу из оцинкованной жести или любой другой массивный металлический предмет, даже если он и не имеет контакта с настоящей землей.

Измерение емкости антенны . Вместо переменного резистора теперь понадобится включить КПЕ (любого типа) с максимальной емкостью 180...510 пФ. Желательно иметь еще и измеритель емкости с пределом измерения десятки-сотни пикофарад. Автор пользовался цифровым измерителем емкости "Мастер-С" , любезно предоставленным его конструктором.

Если измерителя емкости нет, надо поступить так же, как и с резистором - оснастить КПЕ шкалой и проградуировать ее в пикофарадах. Это удается сделать и без приборов, ведь емкость пропорциональна площади введенной части пластин. Нарисуйте форму роторной пластины на миллиметровой бумаге (чем крупнее, тем точнее будет градуировка), разделите чертеж на секторы через 10 угловых градусов и сосчитайте по клеточкам площадь каждого сектора и всей пластины S0. На рис. 2 заштрихован первый сектор с площадью S1. У соответствующей ему первой риски шкалы надо поставить емкость С1=CmaxS1/S0 и т. д.


Рис. 2

Если роторные пластины имеют полукруглую форму (прямоемкостный конденсатор), шкала получается линейной и тогда не надо делать чертежей и считать площади. Например, КПЕ с твердым диэлектриком из набора для детского творчества имеет максимальную емкость 180 пФ. Достаточно разбить шкалу на 18 секторов по 10 градусов, и поставить около делений 10, 20 пФ и т. д. Пусть точность будет и невысокой, для наших целей ее достаточно.

Отградуировав КПЕ, собираем установку по схеме рис. 3.


Рис. 3

Подключив антенну к гнезду XS1 и отключив КПЕ переключателем SA1, настраиваем контур, образованный емкостью антенны и катушкой L1 на частоту радиостанции. Не трогая больше катушку, переключаем антенну в гнездо XS2 и подключаем к контуру конденсатор С2 (наш КПЕ) переключателем SA1. Снова настраиваемся на ту же частоту, теперь уже С помощью С2. Определяем его емкость Ск по шкале или с помощью измерителя емкости, подключенного к гнездам XS3, XS4 (переключив для этого SA1 в показанное на схеме положение). Осталось найти емкость антенны СА по формуле

СА = С2(1 + sqrt(1 +4С1/С2))/2.

Смысл наших манипуляций в следующем: когда мы подключили антенну через конденсатор связи С1, общая емкость контура стала меньше, и чтобы ее восстановить, пришлось добавить емкость С2. Вы и сами можете вывести приведенную формулу исходя из равенства емкости антенны СА (в первом случае) и сложной контурной емкости С2 + САС1/(СА + С1) во втором случае. Для повышения точности измерений емкость конденсатора связи желательно выбирать поменьше, в пределах 15...50 пФ. Если емкость конденсатора связи намного меньше емкости антенны, то и расчетная формула упрощается:

СА = С2 + С1.

Эксперимент и его обсуждение . Автор измерял параметры имевшейся на даче антенны такого вида: провод ПЭЛ 0,7 длиной 15 м, который протянут к коньку крыши и в сторону от дома к соседнему дереву. Наилучшим "заземлением" (противовесом) оказалась изолированная от земли водонагревательная колонка с небольшой сетью труб и батарей местного отопления. Все измерения проведены в СВ диапазоне с использованием стандартной СВ катушки магнитной антенны от транзисторного приемника. Если для настройки на низкочастотном краю диапазона индуктивности не хватало, рядом с магнитной антенной помещался еще один ферритовый стержень, параллельно первому.

Результаты измерений сведены в таблицу. Они нуждаются в небольших комментариях. Прежде всего, бросается в глаза, что на разных частотах и сопротивление потерь и емкость антенны разные. Это вовсе не ошибки измерений. Рассмотрим сначала частотную зависимость емкости. Если бы провод антенны не обладал еще и некоторой индуктивностью LА значения емкости были бы одинаковыми. Индуктивность провода включена последовательно с емкостью антенны, как видно из эквивалентной схемы антенной цепи, показанной на рис. 4.


Рис. 4

Влияние индуктивности сказывается сильнее на высоких частотах, где индуктивное сопротивление возрастает и частично компенсирует емкостное сопротивление. В результате общее реактивное сопротивление антенны уменьшается, а измеренная емкость становится больше. У антенны есть собственная частота f0 - резонансная частота контура LАCА, на которой реактивное сопротивление обращается в нуль, а измеренное значение емкости будет стремиться к бесконечности. Соответствующая этой частоте собственная длина волны антенны Lambda0 примерно равна учетверенной длине провода антенны и обычно попадает в интервал диапазона КВ.

Собственную частоту можно рассчитать по данным измерений емкости на двух произвольных частотах, но формулы получаются слишком сложными. Для своей антенны автор получил СА = 85 пФ. LА = 25 мкГн и f0 - около 3,5 МГц. Для приближенных оценок можно считать, что каждый метр провода антенны (вместе со снижением) вносит индуктивность около 1...1,5 мкГн и емкость около 6 пФ.

Сопротивление потерь при достаточно добротной катушке L1 состоит в основном из сопротивления заземления. Оно, в свою очередь, рассчитывается по эмпирической (полученной на основании опытных данных) формуле М. В. Шулейкина : rп = А*Lambda/Lambda0. Здесь А - постоянный коэффициент, зависящий от качества заземления, с размерностью в омах. Для хороших заземлений А составляет единицы и даже доли ом. Как видим, сопротивление потерь возрастает с увеличением длины волны (понижением частоты), что и подтвердилось данными таблицы. Зависимость сопротивления потерь от частоты обнаружили еще в начале прошлого века, однако подробного объяснения этого эффекта в литературе автор не встречал.

В связи с этим многие данные, полученные радиолюбителями при измерении параметров своих антенн, могут оказаться весьма полезными.

Литература

  1. Фрадин А. 3., Рыжков Е. В. Измерение параметров антенн. - М.: Связьиздат, 1962.
  2. Андреев В. Простой измеритель емкости "Мастер-С". - Радио, 2002. № 1, с. 50-52; № 2, с. 51-53; № 3, с. 52-54.
  3. Белоцерковский Г. Б. Антенны. - М.: Оборонгиз, 1956.

© 2024
gorskiyochag.ru - Фермерское хозяйство